Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Main subject
Language
Document Type
Year range
1.
IEEE Trans Neural Netw Learn Syst ; 33(1): 3-11, 2022 01.
Article in English | MEDLINE | ID: covidwho-1476080

ABSTRACT

This article proposes to encode the distribution of features learned from a convolutional neural network (CNN) using a Gaussian mixture model (GMM). These parametric features, called GMM-CNN, are derived from chest computed tomography (CT) and X-ray scans of patients with coronavirus disease 2019 (COVID-19). We use the proposed GMM-CNN features as input to a robust classifier based on random forests (RFs) to differentiate between COVID-19 and other pneumonia cases. Our experiments assess the advantage of GMM-CNN features compared with standard CNN classification on test images. Using an RF classifier (80% samples for training; 20% samples for testing), GMM-CNN features encoded with two mixture components provided a significantly better performance than standard CNN classification ( ). Specifically, our method achieved an accuracy in the range of 96.00%-96.70% and an area under the receiver operator characteristic (ROC) curve in the range of 99.29%-99.45%, with the best performance obtained by combining GMM-CNN features from both CT and X-ray images. Our results suggest that the proposed GMM-CNN features could improve the prediction of COVID-19 in chest CT and X-ray scans.


Subject(s)
COVID-19/diagnostic imaging , COVID-19/diagnosis , Algorithms , Diagnosis, Differential , Humans , Neural Networks, Computer , Normal Distribution , Pneumonia/diagnosis , Pneumonia/diagnostic imaging , Predictive Value of Tests , Prognosis , ROC Curve , Reproducibility of Results , Tomography, X-Ray Computed , X-Rays
2.
J Med Imaging (Bellingham) ; 8(Suppl 1): 014502, 2021 Jan.
Article in English | MEDLINE | ID: covidwho-1207478

ABSTRACT

Purpose: Coronavirus disease 2019 (COVID-19) is a new infection that has spread worldwide and with no automatic model to reliably detect its presence from images. We aim to investigate the potential of deep transfer learning to predict COVID-19 infection using chest computed tomography (CT) and x-ray images. Approach: Regions of interest (ROI) corresponding to ground-glass opacities (GGO), consolidations, and pleural effusions were labeled in 100 axial lung CT images from 60 COVID-19-infected subjects. These segmented regions were then employed as an additional input to six deep convolutional neural network (CNN) architectures (AlexNet, DenseNet, GoogleNet, NASNet-Mobile, ResNet18, and DarkNet), pretrained on natural images, to differentiate between COVID-19 and normal CT images. We also explored the model's ability to classify x-ray images as COVID-19, non-COVID-19 pneumonia, or normal. Performance on test images was measured with global accuracy and area under the receiver operating characteristic curve (AUC). Results: When using raw CT images as input to the tested models, the highest accuracy of 82% and AUC of 88.16% is achieved. Incorporating the three ROIs as an additional model inputs further boosts performance to an accuracy of 82.30% and an AUC of 90.10% (DarkNet). For x-ray images, we obtained an outstanding AUC of 97% for classifying COVID-19 versus normal versus other. Combing chest CT and x-ray images, DarkNet architecture achieves the highest accuracy of 99.09% and AUC of 99.89% in classifying COVID-19 from non-COVID-19. Our results confirm the ability of deep CNNs with transfer learning to predict COVID-19 in both chest CT and x-ray images. Conclusions: The proposed method could help radiologists increase the accuracy of their diagnosis and increase efficiency in COVID-19 management.

SELECTION OF CITATIONS
SEARCH DETAIL